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Wave functions for the thirteen electron groups of ytterbium have been calculated in the nonrelativistic 
approximation without exchange. Certain innovations in the numerical procedures are described and dis
cussed. In particular, the use of backward integrations is essentially eliminated from the procedure for 
determining the energy-related eigenparameters. Wave functions are tabulated for the outermost four 
subshells, and Slater integrals for the 4 / group. The 4/14 6s2 configuration is assumed. 

INTRODUCTION 

TH E growing interest in the lanthanides has 
prompted the undertaking of a program to 

calculate the radial wave functions and atomic form 
factors of these elements.1 The initial phase aims at 
obtaining reasonably good values as rapidly as possible. 
Thus, these first calculations are nonrelativistic and 
do not include exchange effects. Better approximations 
will be attempted in a subsequent phase of this work. 

This paper describes the methods employed in making 
these calculations and presents the results obtained for 
ytterbium. The choice of this element as a starting 
point was dictated to some extent by the fact that all of 
its electron groups are complete. Further, since its 
atomic number does not differ too greatly from those of 
other heavy elements whose wave functions have 
already been calculated, it was hoped that reasonably 
good initial approximations to the contributions to Z(r) 
could be made and the calculations launched without 
undue difficulty. 

THEORY 

The calculations follow essentially the scheme 
described by Hartree2 and involve repeated solution of 
the equations 

Wm(nl;r)Pm(td;r) = 0, (1) 

where the operator W is given by 

d2 2 
Wm(nl;r) = —+-[Ym(r)+Yn?( 

dr2 r 
((nl)-l(l+l)/r*. (2) 

There is one such equation for each electron group in 
the atom under consideration. These equations are 
coupled through the relations 

d 1 
- y - ( 0 = -Cl r »(r ) -Z m _ 1 ( r ) ] > 

dr r 

d 

dr 
-YJ(nl;r)- I Ym°(nl; r)+ 1 

Z°(«/;0) 

(3) 

(4) 

1 For the atomic scattering factors for ytterbium, see E. L. 
Eichhorn and M. W. Holm, Acta Cryst. 15, 294 (1962). 

2 D . R. Hartree, The Calculation of Atomic Structures (John 
Wiley & Sons, Inc., New York, 1957). 

Zm(r) = Y,ZmQ(nl 
nl Jr 

Pm
2(nl;s)ds. 

(5) 

The terminology is substantially that of Hartree save 
for the substitution of Y°(nl;r) and Z°(nl',r), respec
tively, for Yo(nl; r) and Zo(nl; r) to avoid subscripted 
subscripts. In what follows, the zero superscripts are 
dropped since the arguments indicate clearly which 
functions are intended. 

Thus, Z(nl;r) is the contribution to Z(r) arising 
from the electrons in the nl subshell; q(nl) is the number 
of electrons occupying this subshell; e(nl) is an eigen-
parameter related to the energy; P(nl\ r) is the radial 
wave function sought; r is in Bohr units; m denotes the 
iteration in progress. 

NUMERICAL PROCEDURES 

The zero-order approximations to the contributions 
to Z, Zo(nl; r), and their sum Z0(V) were obtained from 
data on mercury published by Mayers3 and using a 
method described by Ridley.4 These values constituted 
the input data to Eqs. (3) and (4) for the first iteration. 
Runge-Kutta integrations starting with large values of 
r and working back to essentially r = 0 gave the func
tions Fi(r) and Y\{nl\ r), the first input data to Eq. (1). 
Solutions of Eq. (1) then provided the first approxima
tions to the wave functions Pi(nl;r), the input data 
for Eq. (4). Solution of Eq. (4) completes one stage or 
iteration. Basically, the problem from this point on is 
merely to repeat the cycle outlined above until the 
output contributions to Z at some stage do not differ 
from the input values by more than some small, pre
determined number (ideally zero). The wave functions 
are then self-consistent and constitute the best repre
sentation of the true wave functions possible with the 
given model and numerical methods. 

Equation (1) is frequently broken down into two 
first-order equations which are then solved simul
taneously. However, since there is no first derivative 
term, there are Runge-Kutta type algorithms5 (and 

3 D . F. Mayers, Proc. Roy. Soc. (London) 241, 93 (1957). 
Slightly faster convergence would probably have been obtained 
using the values for Tm3+ reported by Ridley. (See reference 6). 

4 E . C. Ridley, Proc. Cambridge Phil. Soc. 51, 693 (1955). 
5 See, for example, J. B. Scarborough, Numerical Mathematical 

Analysis (Johns Hopkins University Press, Baltimore, 1958), 4th 
ed., pp. 316-7. 
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others) which will solve the equation as it stands. Such 
a method was used in this study. The primary problem 
at this point, however, is not the solution of Eq. (1) 
per se, but rather the determination of a value of e(nl) 
which possesses a wave function with the number of 
nodes appropriate to the given values of n and /. 

Commonly, Eq. (1) is solved by integrating back
wards from a large value of r (where the wave function 
is effectively zero) to some intermediate value; inte
grating forward from r=0 to this same value; then 
adjusting e and the starting slopes until continuity is 
achieved at the intermediate point. By taking advan
tage of a pathological feature of the behavior of 
numerical solutions to the wave equation, however, it 
is possible to eliminate the backward integration and 
simplify the procedure for determining the eigenvalues 
e(nl). Figure 1 illustrates the instability just referred 
to. Here are shown the numerical approximations to 
the solution of Eq. (1) for the 2s subshell at the fifth 
stage for two values of e(2s) differing by only unity in 
the least significant digit of an eight-digit representa
tion. The solution may be divided conveniently into 
four sections: (i) a region in which the behavior of the 
solution is that of a traveling wave; (ii) a region in 
which the behavior is that of a damped wave with a 
near-exponential approach to the r axis; (iii) a region 
where the solution is essentially zero; (iv) a region in 
which the solution tends to plus or minus infinity. 

The computer was programmed to take an initial 
estimate of e and, by observing the behavior of the 
fourth region as test changes in e are made, to refine 
this value until a change of unity in the least significant 
digit resulted in a change of sign of the infinity-seeking 
tail. Satisfactory approximations to the wave functions 
at that stage of the calculations could then be obtained 
by discarding the third and fourth regions of those 
solutions in which the infinity-seeking tail had the same 
algebraic sign as the last maximum (or minimum) in 
the first region. 

Where the approach to zero in the third region was 
not sufficiently close, an exponential tail-off was 
substituted for the extreme right portion of the second 
region^Numerically, 

P(nl-rm)~P{nhr3)R(k)^\ (6) 
where 

3(j) = rJ-+1-rj, 

(the jth abscissal increment) and 

R(k) = lP(nl; rk)/P(nl; r^J'*^1*. 

By starting this tail-off at that radius value for which 
R(k) is a minimum (in the second region), wave func
tions at only those points not in agreement with values 
which would be obtained with a backward integration 
are calculated. An exception is provided by the 4 / wave 
function where a starting point midway between that 
of the 4J and 5s functions must be used to obtain a 
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FIG. 1. Behavior of numerical solution to wave equation. 

tail-off which is a satisfactory approximation to that of 
a backward integration. 

To facilitate comparison with the values obtained 
by Ridley6 for Pr3"1" and Tm3+, Slater integrals were 
calculated for the 4 / subshell using the relations 

f * ( 4 / , 4 / ) = / " f —F>W;n)I*(M-yH)&ndn; (7) 
Jo U r > w 

Fk(4f£f) = F*(4f,4f)/Dk, (8) 

where, in particular, Z)2=225, Z)4=1089, and 
£>6= 7361.64. 

RESULTS 

Values of e(nl) for the 13 subshells are listed in 
Table I. The calculated wave functions for the four 
outermost subshells are given in Table II.7 Values of 

TABLE I. Values of e(nl). 

Subshell e Subshell 

U 4204.89 4s 28.575 
4p 23.052 

2s 677.95 U 13.166 
2p 650.55 4 / 0.6707 

3s 151.23 5s 3.3792 
3p 137.70 5p 1.9330 
3d 113.12 

6s 0.33906 

6 E. C. Ridley, Proc. Cambridge Phil. Soc. 56, 41 (1960). 
7 Space limitations make it impractical to include full tables of 

values of the wave functions (Table II) and contributions to Z 
(Table IV) for all of the 13 subshells. These have been deposited 
as Document No. 7384 with the ADI Auxiliary Publications 
Project, Photoduplication Service, Library of Congress, 
Washington 25, D. C. A copy may be secured by citing the 
Document number and by remitting $2.50 for photoprints, or 
$1.75 for 35 mm microfilm. Advance payment is required. Make 
checks or money orders payable to: Chief, Photoduplication 
Service, Library of Congress. 
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TABLE II. Radial wave 

r 

0.0000 
0.0005 
0.001 
0.002 
0.003 

0.004 
0.005 
0.006 
0.007 
0.008 

0.009 
0.010 
0.012 
0.014 
0.016 

0.018 
0.020 
0.022 
0.024 
0.026 

0.028 
0.030 
0.032 
0.034 
0.036 

0.038 
0.040 
0.045 
0.050 
0.055 

0.060 
0.065 
0.070 
0.075 
0.080 

0.085 
0.090 
0.095 
0.100 
0.110 

0.12 
0.13 
0.14 
0.15 
0.16 

0.17 
0.18 
0.19 
0.20 
0.22 

0.24 
0.26 

4/ 

0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.000 
0.000 
0.000 
0.000 

0.000 
0.001 
0.001 
0.001 
0.002 

0.002 
0.003 
0.003 
0.004 
0.005 

0.006 
0.007 
0.010 
0.014 
0.019 

0.025 
0.032 
0.041 
0.050 
0.060 

0.071 
0.084 
0.097 
0.111 
0.142 

0.177 
0.214 
0.253 
0.294 
0.337 

0.381 
0.425 
0.469 
0.514 
0.600 

0.683 
0.760 

5s 

0.0000 
0.0157 
0.0303 
0.0565 
0.0787 

0.0973 
0.1126 
0.1248 
0.1342 
0.1411 

0.1456 
0.1480 
0.1471 
0.1398 
0.1274 

0.1109 
0.0913 
0.0694 
0.0460 
0.0216 

-0.0032 
-0.0279 
-0.0522 
-0.0758 
-0.0983 

-0.1196 
-0.1394 
-0.1819 
-0.2134 
-0.2336 

-0.2426 
-0.2413 
-0.2306 
-0.2120 
-0.1865 

-0.1555 
-0.1203 
-0.0821 
-0.0419 
0.0402 

0.1195 
0.1909 
0.2509 
0.2977 
0.3302 

0.3483 
0.3527 
0.3443 
0.3245 
0.2569 

0.1625 
0.0533 

$p 
0.0000 
0.0001 
0.0005 
0.0021 
0.0045 

0.0078 
0.0117 
0.0163 
0.0214 
0.0270 

0.0330 
0.0393 
0.0527 
0.0667 
0.0810 

0.0953 
0.1093 
0.1227 
0.1354 
0.1473 

0.1581 
0.1679 
0.1765 
0.1840 
0.1902 

0.1951 
0.1988 
0.2027 
0.1992 
0.1890 

0.1729 
0.1519 
0.1267 
0.0985 
0.0679 

0.0358 
0.0031 

-0.0298 
-0.0621 
-0.1232 

-0.1770 
-0.2215 
-0.2554 
-0.2782 
-0.2902 

-0.2917 
-0.2837 
-0.2671 
-0.2431 
-0.1777 

-0.0965 
-0.0077 

65 

0.0000 
0.0038 
0.0073 
0.0137 
0.0190 

0.0236 
0.0273 
0.0302 
0.0325 
0.0342 

0.0353 
0.0358 
0.0356 
0.0339 
0.0308 

0.0268 
0.0221 
0.0168 
0.0111 
0.0052 

-0.0008 
-0.0068 
-0.0127 
-0.0184 
-0.0238 

-0.0290 
-0.0338 
-0.0441 
-0.0517 
-0.0565 

-0.0587 
-0.0584 
-0.0558 
-0.0513 
-0.0451 

-0.0376 
-0.0290 
-0.0198 
-0.0100 
0.0099 

0.0291 
0.0463 
0.0609 
0.0721 
0.0799 

0.0843 
0.0852 
0.0831 
0.0782 
0.0617 

0.0386 
0.0120 

the Slater integrals for the 4 / subshell will be found in 
Table III. The degree of self-consistency achieved was 

TABLE III . Values of the Slater integrals. 

F2 0.5465 F2 0.002429 
Fi 0.3398 Fi 0.0003120 F4 /F2 0.1284 
F6 0.2436 F6 0.00003309 FB/F2 0.01362 
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functions for ytterbium. 

r 

0.28 
0.30 
0.32 

0.34 
0.36 
0.38 
0.40 
0.45 

0.50 
0.55 
0.60 
0.65 
0.70 

0.75 
0.80 
0.85 
0.90 
0.95 

1.00 
1.10 
1.20 
1.30 
1.40 

1.50 
1.60 
1.70 
1.80 
1.90 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.5 
4.0 
4.5 
5.0 

6.0 
7.0 
8.0 
9.0 
10.0 

12.0 
14.0 
16.0 
18.0 
20.0 

22 
24 
26 

4/ 

0.830 
0.893 
0.948 

0.995 
1.034 
1.065 
1.090 
1.127 

1.133 
1.120 
1.092 
1.055 
1.013 

0.968 
0.921 
0.874 
0.828 
0.783 

0.740 
0.658 
0.585 
0.519 
0.462 

0.411 
0.367 
0.328 
0.295 
0.265 

0.238 
0.195 
0.160 
0.132 
0.110 

0.092 
0.059 
0.039 
0.025 
0.017 

0.008 
0.003 
0.002 
0.001 
0.000 

55 

-0.0603 
-0.1699 
-0.2694 

-0.3546 
-0.4230 
-0.4735 
-0.5061 
-0.5152 

-0.4401 
-0.3082 
-0.1445 
0.0316 
0.2059 

0.3692 
0.5157 
0.6423 
0.7482 
0.8334 

0.8991 
0.9789 
1.0027 
0.9859 
0.9414 

0.8798 
0.8088 
0.7341 
0.6596 
0.5878 

0.5202 
0.4009 
0.3039 
0.2274 
0.1685 

0.1238 
0.0559 
0.0246 
0.0106 
0.0045 

0.0008 
0.0001 
0.0000 

Sp 
0.0816 
0.1663 
0.2424 

0.3074 
0.3598 
0.3990 
0.4251 
0.4375 

0.3878 
0.2947 
0.1752 
0.0429 

-0.0921 

-0.2229 
-0.3449 
-0.4552 
-0.5525 
-0.6362 

-0.7065 
-0.8097 
-0.8697 
-0.8950 
-0.8941 

-0.8740 
-0.8405 
-0.7981 
-0.7503 
-0.6997 

-0.6482 
-0.5475 
-0.4549 
-0.3733 
-0.3033 

-0.2445 
-0.1389 
-0.0768 
-0.0416 
-0.0223 

-0.0063 
-0.0017 
-0.0005 
-0.0001 
-0.0000 

65 

-0.0156 
-0.0421 
-0.0662 

-0.0866 
-0.1029 
-0.1148 
-0.1222 
-0.1229 

-0.1030 
-0.0694 
-0.0282 
0.0156 
0.0583 

0.0976 
0.1320 
0.1607 
0.1833 
0.2000 

0.2111 
0.2178 
0.2077 
0.1847 
0.1526 

0.1143 
0.0721 
0.0280 

-0.0169 
-0.0614 

-0.1049 
-0.1867 
-0.2597 
-0.3228 
-0.3755 

-0.4182 
-0.4855 
-0.5073 
-0.4971 
-0.4668 

-0.3786 
-0.2857 
-0.2056 
-0.1431 
-0.0971 

-0.0423 
-0.0174 
-0.0069 
-0.0027 
-0.0010 

-0.0004 
-0.0001 
-0.0000 

such that the largest difference between the input and 
output contributions to Z at the last iteration was less 
than 0.0005 for the 4 / subshell, and less than 0.0001 for 
all other subshells. This means that these calculations 
were carried farther than the nonrelativistic approxi
mation without exchange would normally justify. 

Most of the wave functions of the remaining rare-
earth elements are not being calculated with this 
accuracy. However, as indicated in the first paragraph 
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of this report, calculations of these wave functions using 
better approximations will be attempted when, shortly, 
a more powerful computer becomes available. In the 
case of ytterbium, at least, it will then be possible to 
determine with considerable accuracy the magnitudes 
of the relativistic and exchange effects. Further, it 
becomes possible to study in some detail certain fairly 
simple transformations which when applied to the 
corresponding hydrogen-like wave functions produce 

I. INTRODUCTION 

ATOMIC-BEAM measurements on the "field-
independent" AF=1 hyperfine transition^ have 

given a new precision to the measured value of the 
hyperfine-structure (hfs) separation of 40-day Ag105. 
Preliminary work was done at several fields up to 
about 380 G, using the AF=0 "standard transition." 
When the hfs separation was known well enough, a 
search for direct (AF= 1) transitions was made success
fully. Both AF = 1 lines were measured at low fields. 

II. THEORY OF THE EXPERIMENT 

The theory of atomic-beam magnetic-resonance 
experiments has been developed in some detail since 
the method was introduced by Rabi.1 Measurements 
of transition frequencies between pairs of hyperfine 
sublevels as split by a known magnetic field lead 
directly to a calculated value of the zero-field hfs 
separation. The hfs splitting, in turn, is a measure of 
the strength of the interaction between the electro
magnetic moments of the nucleus and the electrons. 
If the electronic moments are known, the nuclear 
moments can be calculated. The results can then be 
compared with the predictions of various nuclear 
models. 

For the alkali and alkali-like elements of Column I 
in the periodic table, the electronic ground state is 2Si/2. 
The only electron-nuclear interaction is then the contact 

f This work was supported in part by the Office of Naval 
Research and the U. S. Atomic Energy Commission. 

* Present address: Nuclear Data Group, National Research 
Council, Washington, D. C. 

1 1 . I. Rabi, J. R. Zacharias, S. Millman, and P. Kusch, Phys. 
Rev. 53, 318 (1938). 

remarkably good approximations to the self-consistent 
field (SCF) functions. 

The calculations reported on in this paper were 
carried out on a Burroughs 220 10K computer equipped 
with card input and output for data handling, and an 
IBM 407 for printed output. In addition, two magnetic 
tape units were required to accommodate the ALGOL 
compiler. Compile and running times for a typical 
iteration on 13 subshells total a little under three hours. 

interaction between the magnetic moments of the 
single-valence electron and the nucleus. The behavior 
of such a coupled spin system when a magnetic field is 
applied has been described by Breit and Rabi.2 At low 
fields the two spins are tightly coupled and their 
resultants j P = / d b | behave like single dipoles, whose 
magnetic sublevels are split linearly by the field. At 
higher fields, the two spins are gradually decoupled 
until their magnetic splittings are virtually independent. 
The Breit-Rabi equation is an analytic description of 
this field behavior when J = J . If the nuclear moment 
Hi=giHoI and the electronic moment nj=gjnoJ (where 
/x0 is the magnitude of the Bohr magneton), then the 
energy of a magnetic sublevel is given by 

W(H) -Av MO 

= gi—Hm 
h 4 ( / + | ) h 

±K(^)2+2(Av)pf+pjK, (1) 
with 

m 
f=(-gj+gi)(»o/h)H and p = w / F m a x = , 

where hAv=W 1+1,2(0) —W 1-1/2(0) is the zero-field hfs 
splitting between the two levels for F=Idzi and / is a 
field parameter. The sign of the root is chosen positive 
or negative, respectively, depending on whether the 
level belongs to the group having larger or smaller F. 
Figure 1 illustrates this field dependence of the hyperfine 
sublevels for an isotope with 1=- J and a negative 
nuclear moment. (The assumption of a negative nuclear 
moment is proper for the stable silver isotopes Ag107 

and Ag109, and is probably correct for Ag105 as well.) 
2 G. Breit and I. I. Rabi, Phys. Rev. 38, 2082 (1931). 
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Hyperfine-Structure Measurements on Silver-lOSf 
W. BRUCE EWBANK* AND HOWARD A. SHUGART 
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(Received 4 October 1962) 

The hyperfine-structure separation in the 2Sm electronic ground state of Ag105 (40 day; / = J) has been 
measured by atomic-beam methods. The result is A*>= 1529.057(20) Mc/sec, assuming either a positive or a 
negative nuclear moment. Combining this measurement with the known constants of Ag107 gives a nuclear 
magnetic moment of magnitude U/1 uncorrected = 0.1009(10) nuclear magneton. 


